coffeine.covariance_transformers.RiemannSnp#
- class coffeine.covariance_transformers.RiemannSnp(rank='full', return_data_frame=True)#
Map SPD matrix to Riemannian Wasserstein tangent space.
Riemannian Wasserstein embedding step as described in [1]. Implements Wasserstein metric that is not making a strong assumption of full-rank inputs. The transform implies a square-root non-linearity.
- Parameters:
- metricstr, default=’riemann’
The Riemannian metric to use. See PyRiemann documentation for details and valid choices.
- return_data_framebool, default=True
Returning the result in a pandas data frame or not.
References
[1]Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A. and Engemann, D.A., 2019. Manifold-regression to predict from MEG/EEG brain signals without source modeling. Advances in Neural Information Processing Systems, 32.